Έτσι η λέξη αλγόριθμος καθιερώθηκε αργά τα επόμενα χίλια χρόνια με την έννοια «συστηματική διαδικασία αριθμητικών χειρισμών». Τη σημερινή της σημασία την οφείλει στη γρήγορη ανάπτυξη των ηλεκτρονικών υπολογιστών στα μέσα του 20ου αιώνα. Η έννοια του αλγορίθμου γίνεται ευκολότερα αντιληπτή με το παρακάτω παράδειγμα.
Αν κάποιος επιθυμεί να γευματίσει θα πρέπει να εκτελέσει κάποια συγκεκριμένα βήματα: να συγκεντρώσει τα υλικά, να προετοιμάσει τα σκεύη μαγειρικής, να παρασκευάσει το φαγητό, να στρώσει το τραπέζι, να ετοιμάσει τη σαλάτα, να γευματίσει, να καθαρίσει το τραπέζι και να πλύνει τα πιάτα. Προφανώς, η προηγούμενη αλληλουχία οδηγεί στο επιθυμητό αποτέλεσμα.
Δεν είναι όμως η μοναδική για την επίτευξη του σκοπού, αφού μπορεί να αλλάξει η σειρά των βημάτων (π.χ. πρώτα να ετοιμάσει τη σαλάτα και μετά να στρώσει το τραπέζι). Ωστόσο το νόημα είναι πως η κατάτμηση μιας σύνθετης εργασίας σε διακριτά βήματα που εκτελούνται διαδοχικά, είναι ο πιο πρακτικός τρόπος επίλυσης πολλών προβλημάτων.
επεξεργασία και έξοδο αποτελεσμάτων
Π.χ. Σε μία διαίρεση να λαμβάνεται υπόψη και η περίπτωση όπου ο διαιρετέος λαμβάνει μηδενική τιμή. Τυπικές περιπτώσεις η διαίρεση με το μηδέν, υπόριζος ποσότητα αρνητική, κλπ.
Προβλήματα καθοριστικότητας αντιμετωπίζονται συχνά με τη λογική της επιλογής, δηλ. Αν α>0 τότε ..... αλλιώς ...
Μία διαδικασία που δεν τελειώνει μετά από συγκεκριμένο/πεπερασμένο αριθμό βημάτων λέγεται απλά υπολογιστική διαδικασία.
Κάθε μεμονωμένη εντολή του αλγορίθμου να είναι απλή (και όχι σύνθετη).
Δηλαδή μία εντολή δεν αρκεί να έχει ορισθεί αλλά πρέπει να είναι και εκτελέσιμη.
Η περίπτωση που δε δίνονται τιμές δεδομένων εμφανίζεται όταν ο αλγόριθμος δημιουργεί και επεξεργάζεται κάποιες πρωτογενείς τιμές με τη βοήθεια συναρτήσεων παραγωγής τυχαίων αριθμών ή με τη βοήθεια άλλων απλών εντολών.
Ο αλγόριθμος πρέπει να δημιουργεί τουλάχιστον μία τιμή (δεδομένων) ως αποτέλεσμα προς το χρήστη ή προς ένα άλλο αλγόριθμο.
Έτσι ο αλγόριθμος παρουσιάζεται πιο συνοπτικός, συμπαγής ενώ πληρεί και τις προϋποθέσεις του Δομημένου προγραμματισμού.
Με τον όρο τελεστή σύγκρισης εννοούμε ένα από τα σύμβολα < , > , <> , <= , >= , =. Το αποτέλεσμα της σύγκρισης των όρων (νοείται εφόσον οι όροι έχουν κάποια τιμή , δηλαδή δεν περιέχουν την τιμή null) είναι η αλγεβρική τιμή Αληθής (True) ή Ψευδής (False). Οι όροι μπορεί να είναι μεταβλητές ή σταθερές.[3]
Σε αυτή την δομή επανάληψης ελέγχεται πρώτα η συνθήκη και εφόσον ισχύει (δίνει τιμή αληθή) εκτελείται η ομάδα εντολών.
Σε αυτή την δομή επανάληψης εκτελείται η ομάδα εντολών , στην συνέχεια ελέγχεται αν ισχύει η συνθήκη και εφόσον
ΔΕΝ ισχύει
(δίνει τιμή ψευδής) εκτελείται ξανά η ομάδα εντολών.
Σε αυτή την δομή επανάληψης εκτελείται η ομάδα εντολών Ν φορές όπου Ν είναι αριθμός θετικός ακέραιος.